Sunday 18/8/2019

Bookmark and Share
 
 
Daily News
  PandCT RSS Daily News feed
Global Heat Transfer on how thermal fluid choice and maintenance is important for solar power generation.

9 January 2017

“One thing I feel sure of [...] is that the human race must finally use direct sun power or revert to barbarism." This quote from a 1914 issue of Scientific American comes from the inventor, engineer and solar pioneer Frank Shuman, whose illustrious career boasts accolades from attaining over 60 patents and building the world’s first solar thermal power station in Egypt.

Shuman’s revolutionary work in solar thermal power generation provided the basis for today’s concentrated solar power (CSP) plants. Here Clive Jones, managing director of Global Heat Transfer, talks about fulfilling Shuman’s dream by selecting the right thermal fluid for the job and with thorough heat transfer fluid maintenance for CSP plants.


Heat transfer fluid maintenance and analysis are essential operations that need to be conducted on a regular basis. Unfortunately, some plant managers don’t realise that there is a problem until it’s too late.

The trough

One system for large scale solar thermal power generation is the parabolic trough method. Thermal fluids play a vital role in this process and maintenance is paramount to ensure efficient and safe generation of energy.

Parabolic trough power plants use curved, mirrored troughs to reflect direct sunlight onto a central glass pipe containing fluid - called the receiver, absorber or collector.

Thermal heat transfer fluid then passes through the receiver and becomes incredibly hot. This is used to heat water to boiling point and the steam then drives a turbine generator, converting mechanical energy to electrical energy. In this process, about a third of the heat energy is converted to electricity.

With parabolic solar thermal generation, fluids have to work for prolonged periods of time at up to 400 degrees Celsius. This is because at high temperatures, thermal energy can be converted to electricity more efficiently. Synthetic oils are typically used in these applications because they suffer degradation at a slower rate to that of natural oils, although some applications use mineral based oils such as Omnipure.

The right fluid for the job

A heat transfer fluid’s thermodynamic attributes will vary according to operating conditions. At high temperatures, a thermal fluid will experience chemical degradation. The freezing point of thermal fluid must be lower than ambient conditions. Alternatively, the temperature of the thermal fluid needs to be kept above ambient temperature to stop the heat transfer fluid from freezing. For example, some products freeze at 12 degrees Celsius, which is higher than you might expect.

Thermal fluids in solar thermal applications need to have a stable chemical composition at high temperatures to reduce the effects of degradation, as well as a low viscosity. This helps reduce frictional flow and the amount of energy needed to pump the fluid through the system.

Molten fluoride, chloride, and nitrate salt can also be used as heat transfer fluids as well as for thermal storage in solar thermal power plants. A significant problem with the use of molten salt concerns its high freezing point of 120-220 degrees centigrade, which varies with the salt used. This requires innovative freeze protection methods and means that systems using this heat transfer fluid also have higher operation and maintenance requirements and costs.

As well as carefully selecting the right type of fluid for the job, regular monitoring needs to be undertaken so as to establish the condition of the thermal fluid. Problems with heat transfer systems start when fluids are left for prolonged periods of time without correct supervision or maintenance.

The best way to get the most out of fluid and system is to test thoroughly and regularly. Regular representative fluid analysis and a proactive, preventative maintenance plan such as Global Heat Transfer’s Thermocare ensures a healthy system, while reducing down time and decreasing the amount of costly thermal fluid changes needed.

Shuman feared that fossil fuels alone were not enough to sustain man’s growing need for energy. In today’s world, where energy infrastructure is meant to support 7.2 billion people, sustainable energy alternatives have become an imperative. Luckily, with the correct care and attention when it comes to heat transfer fluids, thermal power stations continue to grow as a viable source of renewable energy.

For more information, please contact:

Caroline Law
Global Heat Transfer Ltd
The Global Group of Companies,
Cold Meece Estate
Cold Meece
Stone
Staffordshire
ST15 0SP
Tel:  +44 (0) 1785 760555
Fax:  +44 (0) 1785 760444
Email: carolinel@globalgroup.org
Web:  www.globalheattransfer.co.uk
PandCT.com are not responsible for the content of submitted or externally produced articles and images.
Click here to email PandCT about any errors or omissions contained within this article.
     
Send this page
To send this page to a colleague or friend,
fill in the email addresses below...
Your email address
Their email address:
Page to be sent: shownews.asp?ID=47680

Company gateway pages
for Global Heat Transfer Ltd:
FREE Information on the products in this article
To request more information,
fill in your email address below.
Your email address
 
     
Bookmark and Share
Product categories: Accelerometers | Actuators | Agitators | Analysers | Bearings | Compressors | Controllers | Conveyors | Drives | Enclosures | Flowmeters | Heat Exchangers | Motors | Pumps | Relays | Sensors | Transducers | Transmitters | Valves | Weighing
(c) Copyright 1999-2019 Process and Control Today Ltd  |  Reg. no 3733110  |  Email Editor  |  Email Webmaster  |  Sitemap  |  Privacy Policy