Wednesday 17/1/2018

Bookmark and Share
 
 
Case Studies
  PandCT RSS Case Studies feed
Hydrogen Leak Detection Technology Prevents Power Outages

10 January 2018

FLIR Systems has published a technical note that describes how its GF343 Optical Gas Imaging (OGI) camera is helping utility companies using hydrogen-cooled generators avoid costly power outages.

The operation of an electric power generator produces large amounts of heat that must be removed to maintain efficiency. Depending on the rated capacity of the generator, it might be air cooled, hydrogen cooled, water cooled, or in the largest capacity generators, a combination of water for the stator windings and hydrogen for the rotor. Hydrogen cooling offers excellent efficiency thanks to low density, high specific heat and thermal conductivity.

The technical note discusses how maintenance of hydrogen-cooled generators is critical for the safe and efficient operation of a power plant. Finding and repairing hydrogen leaks from the cooling system can be difficult, time-consuming and potentially dangerous due to the explosive nature of the gas. Traditional methods for hydrogen leak detection tend to be unreliable at finding the source of the leak and better at finding a general area where hydrogen is present. The use of the FLIR GF343 OGI camera is shown to improve the efficiency and performance of leak detection considerably.

The FLIR GF343 OGI camera uses Carbon Dioxide (CO2) as a tracer gas, which is readily available at generating stations. Carbon Dioxide is inexpensive, has a much lower GWP, and much fewer restrictions compared to the traditionally used Sulfur Hexafluoride (SF6).

The authors describe because only a small concentration of CO2 (3-5%) needs to be added as a tracer gas to the hydrogen to make leaks visible to the OGI Camera, the purity level of the hydrogen in the turbine is maintained and normal generating operations are allowed to continue.

As leak detection can now be performed under full operation using the GF343 saves time and money reducing shutdown time by several days representing a lost revenue saving of $80,0000- 100,000 / day. Consequently, the payback and return of investment by using CO2 as a tracer gas and the FLIR GF343 OGI camera is significant.

The FLIR GF343 OGI camera uses a sensitive Indium Antimonide (InSb) detector spectrally adapted to provide optimum performance at 4.3 microns. This spectral tuning is critical to the optical gas imaging technique and, in the case of the FLIR GF343 this makes the camera specifically responsive and ultra-sensitive to CO2 gas infrared absorption.

To download a copy of this technical note please visit www.flir.com/ogi/hydrogen-carbon-dioxide

For more information, please contact:

FLIR Systems
Luxemburgstraat 2
2321 Meer
Belgium
Tel:  +32 (0) 3665 5100
Fax:  +32 (0) 3303 5624
Email: flir@flir.com
Web:  www.flir.com
PandCT.com are not responsible for the content of submitted or externally produced articles and images.
Click here to email PandCT about any errors or omissions contained within this article.
     
Send this page
To send this page to a colleague or friend,
fill in the email addresses below...
Your email address
Their email address:
Page to be sent: shownews.asp?ID=50242

Company gateway pages
for FLIR Systems (European HQ):
FREE Information on the products in this article
To request more information from this supplier,
fill in your email address below.
Your email address
 
     
Bookmark and Share
Product categories: Accelerometers | Actuators | Agitators | Analysers | Bearings | Compressors | Controllers | Conveyors | Drives | Enclosures | Flowmeters | Heat Exchangers | Motors | Pumps | Relays | Sensors | Transducers | Transmitters | Valves | Weighing
(c) Copyright 1999-2018 Process and Control Today Ltd  |  Reg. no 3733110  |  Email Editor  |  Email Webmaster  |  Sitemap  |  Privacy Policy