Saturday 25/5/2019

Bookmark and Share
Daily News
  PandCT RSS Daily News feed
High Precision Automated Plasma Cutting System

27 February 2019

We all know the old sales joke: you can have it good, fast or cheap — pick two. High precision plasma cutting used to be that way, too, only the options were cut speed, quality and parts life.

Today, fabricators enjoy the best of all worlds. On 6mm steel, top cutting speeds reach 100* ipm. A high-precision system can achieve a cut accuracy of ± 0.25 to 1.2 mm and kerf widths as narrow as 1.2mm. Consumables can last from 1,300 to more than 3,700 arc starts, and systems can cut any conductive material from 10 ga. up to 50mm thick. Capabilities continue to expand, too. Hole cutting technology delivers a precision hole or radius with minimal-to-no taper on mild steel from 10 gauge to 25mm and new plasma bevel cutting technology reduces weld preparation time and cost.

A high-precision plasma system concentrates more energy in a smaller area, and increased plasma density creates a precision cut with a narrower kerf, less top-edge rounding and less bevel (see side bar story on Cut Quality). To appreciate the enormity of plasma technology developments, consider that even modern simulation methodologies cannot fully and efficiently model plasma arc behavior without considerable simplifying assumptions. This article will touch on some of the historic developments in high-precision plasma and discuss some of the essentials for maximum productivity today.

*Speeds can increase to 3.8 metres per minute or more if cuts are on long, straight edges or cut quality is less of an issue.

Constricting an Arc

Scientists at Union Carbide’s Linde Division developed the plasma arc cutting process in the 1950s when they constricted a TIG arc to increase its energy density and focus its momentum, forming a cutting arc rather than a welding arc.

Dr. James Browning, a professor at Dartmouth College, founded Thermal Dynamics in 1957 and developed some of the first plasma torches and power sources. At the time, plasma cutting systems used only a single inert gas as the plasma gas because the tungsten electrode eroded rapidly in the presence of oxygen. Without the ability to use oxygen to support oxidation and the associated self-sustaining exothermic reaction, the process had little advantage for cutting steel.

Browning began to change this in 1963 when he introduced a secondary gas to surround the main plasma arc. This shield gas constricted and further concentrated the arc to produce a higher energy density. In dual-flow steel applications, the plasma/shield gas combinations were usually nitrogen/air or nitrogen/O2. Dual-flow cutting increased speed on mild steel, reduced top rounding, drove the arc deeper into the cut and minimized dross on the bottom of the cut.

Electrode Redesign and Cutting Steel

Two additional Browning inventions in 1963 further extended electrode life: stuffing the emitter (then tungsten) into the tip of a copper cylinder and hollowing the back of the cylinder so water could transfer heat away from the electrode and extend service life. Patented in 1963, the design of the plasma electrode remains similar today, with the exception of using tungsten as the emitter.

Because tungsten deteriorated in the presence of oxygen, using air or oxygen for the plasma gas had been abandoned. That changed in the late 1960s when Soviet scientists discovered that hafnium and zirconium resisted rapid deterioration (today, most electrodes use hafnium as the emitter). As result, fabricators could use air as the plasma gas and enjoy significant cost savings; using oxygen for the plasma gas would deliver the highest quality and fastest cuts on thinner sections of steel.

High Precision Cutting

A high precision plasma system concentrates arc energy in a smaller area, in effect creating a sharper cutting tool. The Japanese invented the first high precision systems in the 1980s, and U.S. companies began developing systems in the early 1990s. The challenges forced plasma companies to return to the fundamentals of torch design and operation.

Where some of the early torches had an orifice of about 4.7mm, nozzles today have an orifice of 1mm to 1.1mm. and deliver up to 60,000 amps per square inch of cutting energy. However, increased arc density would have resulted in very short consumables life without new torch designs that brought coolant flow completely down to the orifice of the nozzle, as well as enabled 6 litres per minute of coolant to flow past the nozzle. Previously, coolant flowed into the torch body and not all the way to the nozzle.

How the plasma arc is initiated and terminated greatly affects electrode life. Most torches use a brief high voltage impulse (10 to 20 milliseconds at 6,000+ volts) to make the air electrically conductive, which in turn enables establishing a pilot arc (which uses perhaps 150 volts). To reduce wear, the amount of voltage is carefully controlled and timed.

During termination, electrode wear is minimized by ramping down current, voltage and gas flow to collapse the arc at a controlled rate, which in turn cools the hafnium insert at a controlled rate. Previously, the arc snapped off. When it did, the vacuum created in the spot previously occupied by plasma drew some of the molten hafnium out, causing much faster wear.

Precise torch height control also greatly controls electrode wear and cut precision. Height control is a function of arc voltage, which is directly proportional to the distance between the electrode tip and the plate. Height controllers are settable in 0.1V increments and controlled with a measuring resolution of ± 0.02V. Advanced systems use voltage sampling to adapt for consumable wear, keeping the nozzle at the correct distance from the plate throughout the entire life time of the electrode. For example, imagine the height control was set to 150 V and that voltage equates to a tip-to-plate distance of 5 mm. However, as the electrode wears, the arc becomes longer. Voltage sampling moves the torch progressively closer to the plate as the electrode wears, thus maintaining consistent kerf width and cut quality.

When assembling an automated plasma system, never skimp on a height controller, torch lifter and associated drives and motors. If torch height varies, cut quality will vary from part to part and even within a single part. At a minimum, use a controller with functions for pierce height control, pierce delay and pierce retract. These functions extend consumables life by reducing electrode wear during arc starts and stops, as well as by minimizing the amount of molten metal that splashes up during arc start.

Automatic gas consoles also extend electrode life. Both insufficient and excess plasma gas flow will disturb the molten hafnium puddle instead of keeping it centered. In addition, abrupt changes in gas flow produce arc instability, which in turn could cause immediate damage to consumables (not to mention degrade cut quality).

In the last 20 years, electrode life has more than doubled. For cutting at 400 amps, electrodes that use a multiple-hafnium insert have extended electrode life from 400 to 900 arc starts. Since electrode life is the single biggest contributor to cost per cut, the cost of high precision plasma has continued to come down.

Integration Matters

A fully integrated system includes the plasma power source, CNC controller, torch height control, torch lifter and its associated motors and drives and an automatic gas control console. Unfortunately, there is a misperception that using a high-precision plasma power supply enables saving on other components. In an automated plasma system, integrated components work seamlessly to control cutting amperage, torch height, speed and gas pressure.

Some fabricators also balk at the cost of CNCs and associated software. However, their capabilities provide fast payback, especially if a fabricator lacks operators with programming skills and plasma cutting experience (both of which are otherwise essential without a CNC). Benefits of CNCs and software include:

• Greater productivity and reduced errors. Automatically set and control parameters for “best cut quality” or “fastest cut” after the operator selects the material type, material thickness and cutting gas combination. Operators become productive after just hours of training instead of weeks.

• Hole/process optimization technology. After loading any cutting program (or even just a DXF file into a controller from a USB flash drive), the CNC will examine the file and determine which parameters need to be optimized. After being identified, the controller can quickly recalculate the optimum parameter and cut paths. Similar technologies exist for optimizing cutting order and pierce methods, as well as locations for complicated nests.

• Automatic nesting tools. For fabricators that don’t have a separate engineering department, these tools are invaluable for reducing plate waste and cycle time.

• Bridge tools. Bridge tools typically reduce the number of pierces in a cutting program. They automatically assign cut segments between parts to reduce the number of pierces and cycle time. Cost savings of up to 40% are possible with this tool alone.

Beveling and Bevel Compensation

Plasma beveling — cutting V, Y, X and K bevels on 6mm- to 50mm thick steel — is a hot topic in the industry, with several new systems recently introduced. Currently, most fabricators under-utilize plasma beveling because older beveling systems required programmers to compensate for torch angle, torch height, kerf width and cutting speed in the part program or nest. As a result, operators are prevented from making any necessary adjustments required to produce accurate parts. To make adjustments, the operator must go back to the programmer and have the program or nest updated. This can waste significant time and presents an obstacle to producing quality parts. 

New beveling technology seamlessly integrates plasma, CNC, software, height control, bevel head and gantry functions so users can take full advantage of their plasma system and maximize productivity.

New technology offers a high level of automation for the programmer by incorporating best practice bevel cut sequences into CAD/CAM programming and nesting software. It also puts all bevel compensation data into the CNC, not the programming software. Therefore, the part program or nest represents the actual desired part geometry, without bevel compensations. This eliminates the need for trial-and-error programming. Instead, operators can quickly and easily make any necessary adjustments at the machine. Operators are empowered to produce accurate parts quickly and more easily than with competitive systems.

Integrated plasma technology providers are also working on technology that compensates for the bevel inherent in the cut surface. Even the highest precision systems have some degree of bevel. This will enable plasma to compete more effectively against laser cutting, which has no bevel. The technology is not available yet, but it’s good to know that “high-precision” plasma cutting continues to offer ever-greater quality and productivity.

Cut Quality

Use the following characteristics to evaluate cut quality. Ask your plasma system provider for cut samples that also include cut time and estimated cut cost per part.

• Cut surface. A quality cut means the part is ready for the next fabrication step. Characteristics include a smooth surface free of dross and nitride contamination.

• Top edge rounding, which is caused by the heat of the plasma arc at the top surface of the cut. Proper torch height control minimizes top edge rounding.

• Top spatter. Cutting too quickly or using too high of a torch setting causes top spatter, which is easy to remove.

• Bottom dross. Easy-to-remove dross indicates cutting too slowly. Hard-to-remove dross indicates cutting too quickly.

• Kerf width. The kerf (or cut) width is related to tip orifice size, current setting and torch height.

• Cut surface bevel angle. High-precision processes produce a bevel angle of 0 to 3 degrees, while conventional plasma will produce larger bevel angles. Proper torch height control produces the smallest bevel angle (as well as kerf width and top edge rounding).

• Nitride contamination. When cutting carbon steel with air as the plasma gas, some of the nitrogen becomes absorbed into the cut surface, which then requires grinding before welding to eliminate porosity and eliminate the risk of nitrides at the grain boundary.

ISO 9013-2002 provides the best definition of “high-precision,” which a Class 3 cut or better. A precision cut surface has the following characteristics:

• Square face (< 3-degree bevel)
• Smooth, with nearly vertical drag lines
• Little to no nitrides or oxides
• Has little to no dross; what dross is present should be easy to remove
• A minimal heat affected zone and recast layer
• Demonstrates good mechanical properties in welded components

For more information, please contact:

ESAB Group (UK) Ltd
Tel:  0800 389 3152
Web: are not responsible for the content of submitted or externally produced articles and images.
Click here to email PandCT about any errors or omissions contained within this article.
Send this page
To send this page to a colleague or friend,
fill in the email addresses below...
Your email address
Their email address:
Page to be sent: shownews.asp?ID=52996

Company gateway pages
for ESAB Group (UK) Ltd:
FREE Information on the products in this article
To request more information,
fill in your email address below.
Your email address
Bookmark and Share
Product categories: Accelerometers | Actuators | Agitators | Analysers | Bearings | Compressors | Controllers | Conveyors | Drives | Enclosures | Flowmeters | Heat Exchangers | Motors | Pumps | Relays | Sensors | Transducers | Transmitters | Valves | Weighing
(c) Copyright 1999-2019 Process and Control Today Ltd  |  Reg. no 3733110  |  Email Editor  |  Email Webmaster  |  Sitemap  |  Privacy Policy